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The Solar Strategy
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Summary

The renewed look at the Sustainable Energy results from two
irrefutable reasons:

1. The supplies of fossil and mineral resources are limited.

2. The process in which these resources are used in energy services
damage and even destroy those limited planetary resources on
which our lives depend: water, land and atmosphere.

Concerns about adverse environmental and social consequences of fossil
fuel use and about finite nature of supplies have been voiced intermittently

for several decades -

“Within a few generations at most, some other energy than that of combustion of fuel must
be relied upon to do a fair share of the work of the civilized world.” - Robert H. Thurston -
1901 in the Smithsonian Institution annual report.
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Energy and Power

(in joules) = Force (in newtons) x Distance (in meters)

(in watt) = Rate at which energy is converted from one form
to the other ( in joules per second)

Example: 100 watt light bulb is converting 100 joules of energy into light each second

Power used in a given period is generally used as a measure of energy - kWh
1 kWh = 1000 x 3600 = 3.6 x 10° Joules (i.e. 3.6 MJ)
1 Million tonnes of oil equivalent (Mtoe) = 41.9 x 10%> Joules (i.e. 41.9 PJ)

Exa - 1018; Peta - 101°; Tera - 1012; Giga - 10°;, Mega - 106
1 TW = 31.54 El/year




World Sources and Uses Of Energy

EleCtriCity Space Heating LlC|U|d Fuels
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Primary Energy Consumption per Capita

toe par caplta

One Tone of QOil Equivalent = 11,639 kWh




nergy “cience and Fngineering Center

AT
LA

Growth in Electricity Demand

History Projections

M [ndustrialized MEE/FSU mDeveloping

%
| .
S
o

c

=
©
S

o

X
c

Qo

=

2010 2015 2020 2025

Total:~ 14 TWh 24 TWh

Typical home electricity use in USA = 9000 kWh/year
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Sustainable Energy Vision

Electricity supply, wo

O Nuclear
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Source: Sustainable energy vision 2050, Gunnar Boye Olesen, INFORSE-Europe coordinator, Gl. Kirkevej 56, DK

8530 Hjortshoej, Denmark, email ove@inforse.org. Rio 2002
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' Sustainable Energy Source

Sustainable Energy Source:
One that is not substantially depleted by continuous use

Does not entail significant pollutant emissions or other environmental
problems

Does not involve the perpetuation of substantial health hazards or social
injustices

Renewable Energy Sources:

Generally more sustainable than fossil or nuclear fuels

Essentially inexhaustible

Their use entails lower emissions of greenhouse gases or other pollutants

Fewer health hazards
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Origin of Renewable Energy Flows

Potential, latent Sensible Kinetic Long-wavelength

Shooton " cnemical and | heot energy rodiation Solar radiation (incoming short
nucleor eneray - enersy wavelength):

5.44 x 10® El/year

Short wavelength radiation direct
reflection to space: ~ 30%

Extraterrestrial
sources
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Energy cycle without
anthropogenic interference.
The energy flows are in TW

Geothermal energy

Fossil
deposits

ower - 1 TW = 31.54 E)/year
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inoz?:ﬂ'c ' Source: Renewable energy, Brent Sorensen, jit

ma r 5
Elsevier, 2004, p123
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Possible Sources of Energy Conversion

Direction conversion to heat in air, earth
and oceans: 2.55 x 106 EJ/year

Biomass energy: 4.3 x 103 E]/year

Wind, waves convection and -currents:
11.7 x 103 E]/year

Convection in volcanoes and hot springs:
9.36 El/year

Ocean tides: 93.6 EJ/year

We should pay attention to those
areas of energy cycle which have
not yet been utilized for which
energy conversion methods have
been in place.

~ 4.7 x 107 of the solar radiation

Maximum relative change during the past
500K years has been 103
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Solar Electricity

Solar-thermally generated electricity:

Complex collectors to gather solar radiation to produce temperatures
high enough to drive steam turbines to produce electric power.
For example, a turbine fed from parabolic trough collectors might take steam at 750 K

and eject heat into atmosphere at 300 K will have a ideal thermal (Carnot) efficiency of
about 60%. Realistic overall conversion (system) efficiency of about 35% is feasible.

Solar Photovoltaic energy:

The direct conversion of sun’s rays to electricity.

The efficiency (the ratio of the maximum power output and the incident radiation flux) of
the best single-junction silicon solar cells has now reached 24% in laboratory test
conditions. The best silicon commercially available PV modules have an efficiency of over
17%.
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Solar-thermal Power Systems

In 1914, Frank Shuman of Philadelphia was planning to build 50,000 km? of collectors in Sahara
dissert. With present technology, such a plant can generate 2500 GW of electricity.
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Solar Thermal

Levelized cents/kWh in constant $2000'
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PV Costs

First generation (I): Crystalline PV

_ USS0.10/W US$0.20/W US$0.50/W

-~_|Thermodynamic

limit Thin Film PV

Based on
nanotechnology using collections of
atoms of semiconducting material. Films
containing nanocrystalline structures
and nanostructured conducting polymers
, o el Sl LU are designed to absorb much of the solar
i =, spectrum. This technology will lead to
0 -:i__j;:;”""j M P\ cclls made from thinly stacked plastic
e |_ _ | sheets converting solar energy to
100 200 300 400 500 electricity with very high efficiency and at

Cost, US$/m? very low cost.

- US$1.00/W

Efficiency, %

B
o

Photoelectrochemistry, an area of confluence between solar cell technology and

battery or fuel cell technology, is playing role in the development of organic
solar cells.
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Solar Cell Power Conversion n
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Figure 2 Power Conversion Efficiency Trends over Time for Different
Kinds of Photovoltaic and Photoelectrochemical Devices (CIS = cadmium-
indium-selenide;  CIGS = cadmium-indium-gallium-selenide)  (Source:
Kazmerski 2001)
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Photovoltaics
Levelized cents/kWh in constant $2000°
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Cost of Photovoltaic Modules
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Fig. 1.1. Development of annual global PV module shipments and prices since 1977

Source: Photovoltaics Guide book for Decision makers by Bubenzer and Luther; Springer, 2003
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Renewable Electricity Generation
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Source: Photovoltaics Guide book for Decision makers by Bubenzer and Luther; Springer, 2003
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Solar Cell Land Area Required

NORTH - HURORE ASIA AND Elﬁi!im
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O

O
AFRICA

SOUTH
AMERICH ;
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AND OCEAMIA ,ff

21998, EB, Ing

6 Boxes at 3.3 TW Each =20 TW  syuce: smatiey, 2003
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Summary

The solar technology is still in its infancy, comparable with the
automobile of 1920’s.

The future solar cells will be made of flexible materials capable
of converting the entire solar radiation spectrum into electricity.

Cost reductions will result in massive use of solar electricity in a
not too distant future.

Source: Smalley, 2003
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Sustainable Energy:
The Solar Strategy

(Continued from Lecture 4)
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Home work

1. Compare the total purchase costs of a nominally 2.5 kW (peak)
photovoltaic system for the following three choices of solar modules:

a) First generation crystalline silicon modules of 15% energy conversion
efficiency at a projected cost of $240/m?;

b) Second generation thin film modules of 12% conversion efficiency at a
projected cost of $60/m?;

c) Third generation polymer modules of 50% conversion efficiency at a
projected cost of $80/m?

Assume balance of system components, include everything in a
photovoltaic system other than the photovoltaic modules, is about 60% of
the total module cost.

(Solar modules are normally given a rating under “peak” sunlight,
corresponding to 1 kW/m? intensity)
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Home work

2. Estimate the cost of electricity ($/kWh) produced by two 1 kW BWC XL-1
turbines:

The total cost of the system is $15,000;
Depending on the wind resource, 160-400 kWh per month is produced;

12 hours to one week of back-up power is provided using battery storage.
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Wind Power

4; SNR=E! THE EvoLUTION OF COMMERCIAL
e U.S.WIND TECHNOLOGY

*@’"fz

* QO smw
GE WIND

1990s 36 MW 7

* Structurally stiff 2 Forecast
I 9805 * 3 bladed — upwind yaw-driven ’

* Variable speed and constant speed o -

+ Special airfoils — NREL Sl _-O1smw
+ Stall regulated and pitch controlled 1.5 MY,"

* Planetary transmission /.

* Structurally stiff

* 3 bladed — upwind yaw-driven

* Constant speed and 2 speed

= 5tall regulated/tip brakes or s fnilctlon senerator
full-span pitch controlled : :

* Fiberglass blades Large size to reduce COE 750kW

* Geared transmission Future
* Induction generator Innovation

* Steel truss or tube tower

o
o

* Scale to larger size
* Advanced blade materials
and manufacturing
H 50 - 300kWY * Low speed direct drive generators
I5m - 30m diameter = Custom power electronics (high efficiency)

» Feedback control of drive train

and rotor loads
* More flexible structurally
= O&M reduction features

300kWV - 750kW
30m - 50m diameter

Rotor Diameter in meters

2000 2010
Source:Thresher & Dodge, Wind Energy Journal 1998
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Large Scale Wind Turbine

Boeing 747-200

GE 3.6 MW
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Wind Energy Costs Trends

Levelized cents/kWh in constant $20001

COE cents/kWh

1980 1990 2000 2010 2020

Source: NREL Energy Analysis Office
"These graphs are reflections of historical cost trends NOT precise annual historical data.
Updated: June 2002
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Global Wind Energy

Country 2004 MW % of total
Germany 16,629 35.1 World Total: 47,317 MW
Spai 8,263 17.5 .

pam : 2004 Installations: 7,976 MW
United States 6,740 14.2

Growth rate: 20%
Denmark 3,117 6.6
India 3.000 63 2020 Prediction: 1,245,000 MW
. . .

Italy 1,125 24 12% of world electricity generation
United Kingdom 888 1.9
Japan 874 1.8
China 764 1.6
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| US Wind Energy Installations

States with most wind energy installed, by capacity (MW)

California - 2,096 MW
Texas - 1,293 MW
Minnesota - 615 MW
Iowa - 632 MW
Wyoming - 285 MW

G P~ WNEH

Largest wind farms operating the U.S. (MW)

Stateline, Oregon-Washington - 300 MW

King Mountain, Texas - 278 MW

New Mexico Wind Energy Center, New Mexico - 204 MW
Storm Lake, Iowa - 193 MW

Colorado Green, Colorado - 162 MW

High Winds, California - 162 MW

oOounh, WNEH
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Biomass

Levelized cents/kWh in constant $20001

COE cents/kWh
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Power Cost

Chart 1: Comparison of Technology Progress Scenarios

2001 B2005-2010 Medium Progress B2005-2010 Rapid Progress
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’ Electricity Generation Costs - 2004

¢/kWh
Combined cycle gas turbine 3-5
Wind 4-7
Biomass gasification 7-9
Remote diesel generation 20-40
Solar PV central station 20-30

Solar PV distributed 20-50
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’ Non-solar Renewable Energy

The power of the tides is harnessed by building a low dam or
barrage in which the rising waters are captured and allowed to
flow back through electricity generating turbines.

Heat from within the earth is the source. Hot rocks near the
surface can heat water in underground aquifers to provide hot
water or steam.
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Renewable Energy Technologies
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Fig. 1.11. Growth of renewable energy technologies in the “Solar Energy Economy”
scenario until 2050

Source: Photovoltaics Guide book for Decision makers by Bubenzer and Luther; Springer, 2003
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Space heating - Cost effective to invest in home
insulation. District heating - distributing heat from
waste heat from power generating plants.

Water heating: passive solar thermal systems —

1z

Solar Heating

1 Btu = 1,055.0559 joule
1 Quadrillion = 101>

il s

Source: Annual Energy outlook - 2004, Energy Information Administration
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Transportation Energy Consumption
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Source: Annual Energy outlook - 2004, Energy Information Administration
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Light Duty Vehicles by Fuel Type

Thousands of
Vehicles sold

Source: Annual Energy outlook - 2004, Energy Information Administration
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201112 210715 - .
200z 2015 Cars Light trucks

Year Small Medium Large Small Medium Large
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Performance

BTU/mile (fuel production and vehicle) Renewable/
Petroleum Natural Gas E_I?_Ctr"_"ty

14,000 R : T
12,000 +
10,000 +
8000 T
6000 +—
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Vehicle Life Time Energy Consumption

FIGURE 2. RELATIVE CONSUMPTION OF LIFE-CYCLE ENERGY

B Total energy (LHV) from all sources consumed during vehicle lifetime
B Shown as percentage of baseline vehicle energy consumption
® Total energy includes vehicle operation and production of both vehicle and fuel

2001 REFERENCE

2020 BASELINE

GASOLINE ICE

GASOLINE ICE HYBRID

DIESEL ICE

DIESEL ICE HYBRID

HYDROGEN FC

HYDROGEN FC HYBRID

GASOLINE FC

GASOLINE FC HYBRID

60

Source: Weiss et al., “Comparative Study of Fuel Cell Cars”, MIT Energy Laboratory (2003)
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Vehicle Total Energy Use

WELL-TO-WHEELS ENERGY USE

O Current B Future

Energy use (Btu/mi)

P2
>

NG NGw/ Coal Coalw/ Nuclear Biomass Biomass| NG Electrolysis Wind PV (grid Gasocline
seq. seq. w/ seq. (grid) backup} (GEA)

CENTRAL STATION MIDSIZE DISTRIBUTED
Technology

Source: M. Ramage et al., The Hydrogen Economy..., National Academy of Engineering, 2004
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Renewable H, Energy System
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US CO, Emissions in 2000

Millions of metric tons per year carbon equivalent

700
[INatural Gas

M Petroleum
H Coal

Residential Commercial Industrial Transportation Electric
Generation
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Fossil and Renewable Energy Domains
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Source: Mervin Brown, NREL
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Micropower
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Optimal generation plant size
for a single plant based on
cost per megawatt [MW],
1930-1990

1980 Source: Charles E. Bayless, “Less is More:
Why Gas Turbines Will Transform Electric
Utilities.” Public Utilities Fortnightly
12/1/94
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| Global Distribution Generation

44

Worldwide
42
40
i I I
30 I T T T

(GWIYT)
2001 2002 2003

Deregulation

Quality/reliability power demand
Environment concerns
Distribution constraints
Flexibility to add capacity

Source: John Cassidy, United Technologies Corp.

2004

48
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2005 2006

Siting and Permitting process
Lack of interconnection standards
Back-up tariffs

Near term cost
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Power Output Ranges
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Emissions

(Pounds of emissions per 1000 kWh NOx, CO,
SOx, Hydrocarbon, Particulates)

Average U.S. Microturbine Combined cycle Fuel cell
fossil fuel plant gas turbine
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CO, Emissions

K10[0]0)
(Pounds of CO, per 1000 kWh)
2000
1000
0
Average U.S.  Microturbine Fuel cell Combined Fuel cell
fossil fuel plant cycle gas (with co-
turbine generation)

Source: UTC estimates
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Hydrogen Economy

Hydrogen
Oxygen (air)

Hydrogen Fuel Cell e '
° Storage
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Electrolysis
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Hydrogen
Storage
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Summary

Edison anticipated a highly dispersed electricity system, with individual
businesses generating their own power - Renewable energy is ideally
suited to realize this goal.

The cost gap between wind and conventional power continues to close.

New business models will evolve around renewable and micropower
technologies.
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Energy & Security
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National security is
energy security.

Source: Mervin Brown, NREL
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