Photovoltaics is Solar Electricity

Photovoltaics (PV)

 Direct conversion of sunlight to electricity

Advantages

- Modular (mW to many MW)
- No (or few) moving parts
- Noise and pollution free
- Reliable; low operating costs
- Abundant, indigenous resource (30,000 km² PV for 800 GW)

Solar Cell Structure

10% efficiency = 100 W/m² or 10 W/ft²

How to select the semiconductor absorber material(s)?

Four-junction device with bandgaps 1.8 eV/1.4 eV/1.0 eV/0.7 eV Theoretical efficiency > 52%

PV Module Production Experience (or "Learning") Curve

World PV Cell/Module Production (MW)

Source: Paul Maycock, PV News, February 2005

PV Module Production in 2004 by Technology Type *

Technology Type	MW	%	
Flat plates – Single crystal silicon	403.5	33.8	~
Cast polycrystalline silicon	669.1	56.0	>93%
Ribbon silicon	41.0	3.4	
Thin film amorphous silicon	64.6	5.4	
Thin film cadmium telluride	13.0	1.1	
Thin film CIGS	3.0	0.3	
Concentrators – Silicon	0.5	<0.05	
TOTALS	1194.7	100	

Crystalline Silicon – Ingots

- Cast multicrystalline ingots are fastest growing segment of PV industry:
 - Commercial systems available
- Up to 300 kg ingots
- Extensive development of thermal profiles, impurity distributions, crucibles, automation
- Efficiencies ~10% lower than single crystals
- Opportunities for new crystal growth developments: low-cost FZ and CZ for PV; larger cast ingots; control grain sizes, defects, and impurities

- Crystal growth developments: larger ingots (to 60 kg CZ, 20 cm diameter), reduced consumables costs (energy, crucibles, ambient gases, hot zones), batch melt recharge for multiple ingots
- PV-specific growth of CZ; starting low-cost FZ
- Highest efficiencies for single crystals: FZ > CZ
 - 24.7% laboratory cell (FZ)16-22% production cells13-17% commercial modules25-year warranties

Crystalline Silicon – Wafering

- Advent of wire-saw is a significant result of terrestrial PV research:
 - Faster than ID saw (1000 vs. 25 wafers/hour)
 - Less surface damage
 - 250-300 µm thickness, 200 µm kerf routine
- Ongoing advances needed:
 - Thinner, stronger wires
 - Slurry recycling, water-based slurries
 - Thin wafer handling in processing
 - Detecting microcracks in wafers

Crystalline Silicon – Ribbons

- First of new, terrestrial PV technologies to be commercialized
- More than 20 innovative ribbon/ sheet growth approaches researched
- Two leading techniques in production:
- Edge-defined film-fed growth (EFG)
- String Ribbon

RWE Schott Solar (U.S., Germany)

- Research issues:
 - Yield and throughput (growth rate, ribbon width)
 - Thin ribbons (~100 µm)
 - Thermal stress control
 - Melt replenishment
 - Continuous growth
 - Defects and impurities

High-Efficiency Silicon Solar Cells

Buried-contact cell/UNSW BP Solar – 18.3%

- Processing/lifetime relations
- Gettering/passivation of impurities/defects (Si₃N_x:H deposition for polycrystalline Si)
- Feedback to crystal growth
- High-throughput, low-cost (e.g., rapid thermal) processing
- Selecting "cheapest" wafer or "cheapest" process will not always result in lowest-cost module

Crystalline Silicon – Sheets, etc.

Thin-Film PV Technologies

- Low materials use (~1 μm vs. ~300 μm for Si) – direct bandgap absorbers
- Low-cost substrates (glass, stainless steel, plastics)
- High-throughput deposition processes (batch or continuous)
- Lower processing temperatures (less energy use); some non-vacuum
- Fewer processing steps for modules; integral interconnection of cells during film deposition

 Choice of materials dictated by efficiency, materials availability, ease of manufacturing, module reliability, market acceptance

- Leading technologies:
 - Amorphous silicon (a-Si:H)
 - Cadmium telluride
 - Copper indium gallium diselenide (CIGS)
- Future technologies:
 - Thin (polycrystalline) silicon
 - Polycrystalline multijunctions

Thin-Film Amorphous Silicon

- Multi-MW/year in consumer products
- Substrate choices for unique products; lightweight (flexible), building-integrated (roofing tiles, semi-transparent windows)
- Engineered solution for "light-induced degradation"; thin absorber layers and multijunctions

Stabilized efficiencies: 13% laboratory cell 10% best prototype module 5-8% commercial modules Up to 20-year warranties

- Largest thin-film manufacturing facility: 30 MW/year (United Solar Ovonic, U.S.)
 - High-rate deposition (10-100 Å/s
 - vs. 1-3 Å/s)
 - Hot-wire CVD
 - VHF plasma
 - Microwave plasma

- Large research infrastructure leveraged by other applications
- Fundamental understanding of
 Metastability
 - Roles of hydrogen and impurities
 - Microstructure (amorphous to microcrystalline)
 - Gas phase chemistry and control
 - Low-bandgap materials

Thin-Film Cadmium Telluride

- Better understanding of film growth is key
 - Thin CdS and alternate buffer/window layers
 - CdTe nucleation and growth; thinner layer
 - Native defects and doping
 - CdS/CdTe interdiffusion
 - Annealing and heat treatment (CdCl₂)
 - Back contacts; role of Cu diffusion
- Compatibility of manufacturing process steps; simplified manufacturing processes
- EH&S issues extensively studied and under control (e.g., recycling) – Cd perception issue?

- Many scalable deposition approaches for >10% efficiency (high-rate vapor transport, electrodeposition, spraying, close-spaced sublimation, CVD, sputtering, etc.)
- Early consumer products (~1 MW/year)
- Large-scale manufacturing underway:
 - CdS/CdTe deposited in <1 min
 - Module start-to-finish in ~4 hrs
 - Up to 25 MW/year (First Solar, LLC, U.S.)

16.5% laboratory cell11% best prototype module7-9% commercial modules10-20 year warranties

Thin-Film CIGS

- Varied deposition approaches: co-evaporation of elements, sputtering/selenization, nonvacuum/wet chemical, electrodeposition
- Glass or flexible substrates (stainless steel, polyimide) for varied products
- Manufacturing of several MW underway, with increasing interest worldwide

19.5% laboratory cell18.6% with ZnS ("Cd-free" cell)13% best prototype module9-11% commercial modules>10-year warranties

SEM images of stages of film growth (a \rightarrow d)

- Understanding of film growth, microstructures, defects, and device physics complex but "tolerant" to processes
- Recipe for high-efficiency devices: Cu-rich step (large grains) followed by In-rich step (for target composition)
- Role of Na (necessary); higher bandgap alloys (Ga, S)
- Alternate, Cd-free window/buffer layers
- Process controls in manufacturing for uniform composition and thinner films (<1 μm); higher throughput and yield

Thin-Film PV Manufacturing and Applications

Thin-Film PV Manufacturing and Applications

New Thin-Film PV Research Directions

Thin Crystalline Silicon

- Microcrystalline Si bottom cells for a-Si:H • multijunctions - in production
- Thin polycrystalline silicon (<10 μm) on low-cost substrates
 - Light-trapping designs
 - Many novel approaches (e.g., "lift-off" from re-usable wafers, recrystallizing amorphous or small-grained films, etc.)

Transparent Conductors

n-type	p-type
ITO*	CuAlO ₂
SnO ₂ : F, Cl, Sb*	CuInO ₂
ZnO: Al, B, Ga, In*	Cu ₂ SrO ₂
CdO: F	ZnO: N, Ga
Cd_2SnO_4	
In ₂ O ₃	Key components for all
In ₂ O ₃ : Mo	thin-film technologies –
Zn_2SnO_4	opportunities for crystal
* Commercial Products	growth research

Heterojunction Partners "Buffer Layers"

Material	Process	Material	Process
• Ga_2S_3	PVD	• SrF ₂	PVD
• Ga ₂ Se ₃	PVD	• ZnIn _x Se _y	PVD
• $(InGa)_2Se_3$	PVD	• Zn_xMg_yO	Sputter
• $In(HO)_3$	CBD	• ZnO	ALD, MOCVD
• In _x Se _y	PVD	• $Zn(O,S,OH)_x$	CBD
• In_2Se_3	ALCVD	• ZnS	CBD, PVD
• SnO ₂	CBD	• ZnSe	Sputter
• $Sn(S,O)_2$	CBD	• ZrO ₂	CBD

03540718

ALD - atomic layer deposition; CBD - chemical bath deposition; PVD - physical vapor deposition

Polycrystalline Thin-Film Multijunctions

- Early results validate some of the concepts: 12.7% CdTe top cell (>50% transmission)
 9.7% mechanically-stacked CGS/CIS
 5.1% CGS/thin polycrystalline Si tandem
 All-sputtered CdTe/HgCdTe tandem (1.3%)
 21.5% CIGS cell under concentration (14 suns)
- Significant research needed to accomplish goals

 Success of CIGS and CdTe is motivating new research toward higher efficiencies in thin films:

>25% solar cells >20% modules

- Potential to improve flat-plate silicon efficiency with appropriate top cell or develop top cell/thin Si tandem
- Key research questions: efficient top cell (>15%) with bandgap of 1.5-1.8 eV; tunneljunction interconnects; compatibility of film growth processes; monolithic versus mechanical-stack designs

Concentrator PV Technologies

- Manufacturability demonstrated for all system components:
 - Low-concentration, line focus
 - High-concentration, point focus
 - Refractive and reflective optics
 - Secondary optics; passive/active cooling
 - Tracking and supports; installation
 - High-efficiency cells (Si, III-Vs) are in production – best cell efficiencies:

27% Si (up to 400X)
28% GaAs (up to 1000X)
39% GaInP₂/Ga(In)As/Ge triplejunction (up to 600X)
37.9% GaInP₂/GaAs/GaInAs at 10X

- Commercial modules: ~17% (Si)
- Best prototype modules: >20% (Si), >24% (GaAs), 28% (GaInP₂/GaInAs/Ge), >20% (Si dense-array)
- Predictable, low costs for large-scale manufacturing and deployment
 - Applications are limited to areas of high direct (not diffuse or global) solar radiation
 - Many of today's distributed PV markets are not suitable for concentrators (>25 kW units)

High-Efficiency Concentrator Cells

- Multijunction devices offer better utilization of solar spectrum
- Highest efficiencies in III-V materials
- Opportunity to tailor bandgaps
- Lattice-matched or mismatched growth
- Complex crystal growth challenges alloying, doping, control of defects and impurities, compatibility and stability of successive layers, passivating layers and tunnel junctions
- Commercial growth systems (MOCVD) produce cells for space markets _____
- Early terrestrial tests promising

Lattice-Matched (LM)

Lattice-Mismatched or Metamorphic (MM)

- Adding 1-eV cell in above structure should result in >40% efficiency (GaInAsN?)
- 5-junction and 6-junction cells are being investigated – easier to match lower currents but get higher voltages (mostly for space)
- Potential to improve silicon cell efficiency with appropriate top cell – recent results on lattice-matched GaNPAs-on-Si (with GaP tunnel junction) look promising

Future Generation PV Technologies

Future Generation PV Technologies

 E_{G}

E

What is the future for PV?

 Market needs Technology projections - Crystalline silicor - Thin films/Concentrators New technologies Solar future

Incentive programs – and government policies – are key to continued progress: - Feed-in tariff (Germany, Spain, etc.) **Subsidies** – now only 15% (Japan) - Portfolio standards/buydowns/tax credits (U.S.)

Existing State RPS Requirements: 18 States and Washington, D.C.

Exhibit LSS-7

RANGE OF TOTAL VALUE OF PV:

PV Module Production Experience (or "Learning") Curve ... The "near-term" scenario

PV Module Production Experience (or "Learning") Curve ... The "mid-term" scenario

PV Module Production Experience (or "Learning") Curve ... The "long-term" scenario

Solar Decathlon II October 7-16, 2005

Solar Street

Energy-Plus Hy-Solar Village

 \blacklozenge

Electrolyzer

Community Services

Section 1

3

Solar PV Car Park & Hy-Fuel Station

Are there enough materials for energy-significant PV production?

Technology	Material	World Production ^a	Materials Required ^{a,D}	% of Current Production	Annual Growth Needed (%)
Crystalline silicon -	Purified silicon	25,000 MT/yr ^b	130,000 MT	520%	3.7%°
	Silver (grids/cell pads)	20,000 MT/yr	6,000 MT	30%	0.53%
Thin-film Cu (In, Ga) Se ₂ alloys	Indium	250 MT/yr (byproduct)	400 MT	160%	2.0% ^d
	Selenium	2,200 MT/yr	800 MT	36%	0.6%
	Gallium	150 MT/yr	70 MT	47%	0.9% ^f
Thin-film cadmium telluride	Tellurium	450 MT/yr (2,000 unused byproduct)	933 MT i	38% (of total, ncluding unused)	2.2%
	Cadmium	26,000 MT/yr (byproduct)	800 MT	3%	0.06%
Thin-film silicon	Germanium	270 MT/yr (3,200 unused byproduct)	40 MT i	1% (of total, ncluding unused)	0.7%

^aNecessary production for each type of PV technology to produce 20 GW/yr by 2050.

^bMetric Tons

Elemental silicon is not constrained by supply; current production is low because of low demand.

^dIndium is a byproduct of zinc, which has been growing at 3%/yr for 50 years. Indium growth will probably exceed demand because of growth in zinc extraction. Indium production would only have to increase 2%/yr to keep pace with demand.

*Selenium is a byproduct of copper; an increase of only 0.16%/yr would keep pace with demand.

fGallium is not constrained by supply; current production is low because of low demand.

PV Manufacturing R&D Cost/Capacity (DOE/U.S. Industry Partnership)

Silicon Feedstock – Is there a problem?

- With annual growth of 10% in IC industry and 35% in PV industry, shortages are expected by 2005
- Adding new EC capacity requires price of >\$60/kg
- "Solar-grade" silicon by modified Siemens process:
 - Fluidized-bed reactor (granular feedstock)
 - Silicon tube to replace slim-rod (high-rate dep'n)
 - ~\$30/kg should be possible and be available
- Feedstock only ~5%-7% of PV system cost today

- Historically, PV industry used "lowcost" end of electronic-grade Si
- "Scraps" and "off-spec" approx. 5% of total (<\$20/kg)
- In 2003, ~9,000 MT for PV out of ~26,000 MT silicon produced

- Purifications of MG-silicon possible (acid-leaching, slagging, alcohol dissolution, reactive gas blowing, directional solidifications, etc.)
- Not likely to result high-enough quality for high-efficiency solar cells
- Area for extensive materials research